Search results for "Quantum Darwinism"

showing 6 items of 6 documents

Role of information backflow in the emergence of quantum Darwinism

2019

Quantum Darwinism attempts to explain the emergence of objective reality of the state of a quantum system in terms of redundant information about the system acquired by independent non interacting fragments of the environment. The consideration of interacting environmental elements gives rise to a rich phenomenology, including the occurrence of non-Markovian features, whose effects on objectification {\it a' la} quantum Darwinism needs to be fully understood. We study a model of local interaction between a simple quantum system and a multi-mode environment that allows for a clear investigation of the interplay between information trapping and propagation in the environment and the emergence…

Physics[PHYS]Physics [physics]---Quantum PhysicsQuantum channels Quantum correlations in quantum information Quantum Information Quantum Darwinism/dk/atira/pure/subjectarea/asjc/3100/3107FOS: Physical sciencesQuantum Darwinism01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasTheoretical physics0103 physical sciencesQuantum systemObjectification010306 general physicsQuantum Physics (quant-ph)Phenomenology (particle physics)
researchProduct

Objective features in quantum states

2023

One of the key features of quantum mechanics is that any superposition of quantum states is in itself a legitimate quantum state. This has far reaching consequences, and is behind the stark difference in behaviour between quantum and classical systems. In particular, quantum systems are not -unlike classical ones- intrinsically objective, that is, different observers are not always able to agree on the properties of the system. Understanding the conditions for objectivity in quantum states is therefore key to address the wider issue of the quantum-to-classical transition. Here, we discuss several aspects of quantum objectivity, and in particular subtleties that arise to the definitions of o…

Quantum objectivityOpen quantum systemQuantum DarwinismCollision modelsQuantum-to-classical transitionSettore FIS/03 - Fisica Della MateriaSpectrum broadcast structure
researchProduct

Witnessing objectivity on a quantum computer

2021

Understanding the emergence of objectivity from the quantum realm has been a long standing issue strongly related to the quantum to classical crossover. Quantum Darwinism provides an answer, interpreting objectivity as consensus between independent observers. Quantum computers provide an interesting platform for such experimental investigation of quantum Darwinism, fulfilling their initial intended purpose as quantum simulators. Here we assess to what degree current NISQ devices can be used as experimental platforms in the field of quantum Darwinism. We do this by simulating an exactly solvable stochastic collision model, taking advantage of the analytical solution to benchmark the experime…

Quantum PhysicsPhysics and Astronomy (miscellaneous)Materials Science (miscellaneous)FOS: Physical sciences01 natural sciencesAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della Materia010305 fluids & plasmas0103 physical sciencesOpen quantum systems quantum darwinism quantum objectivityElectrical and Electronic Engineeringcollision models; objectivity; quantum computers; quantum Darwinism; quantum information010306 general physicsQuantum Physics (quant-ph)
researchProduct

Decoherence without entanglement and quantum Darwinism

2020

It is often assumed that decoherence arises as a result of the entangling interaction between a quantum system and its environment, as a consequence of which the environment effectively measures the system, thus washing away its quantum properties. Moreover, this interaction results in the emergence of a classical objective reality, as described by quantum Darwinism. In this Rapid Communication, we show that the idea that entanglement is needed for decoherence is imprecise. We propose a dynamical mixing mechanism capable of inducing decoherence dynamics on a system without creating any entanglement with its quantum environment. We illustrate this mechanism by introducing a simple and exactl…

open quantum systems. decoherence quantum darwinism quantum nonmarkovianity---PhysicsQuantum PhysicsQuantum decoherenceProperty (philosophy)FOS: Physical sciencesTheoryofComputation_GENERALQuantum entanglementQuantum PhysicsQuantum Darwinism01 natural sciences010305 fluids & plasmasQubitQuantum mechanics0103 physical sciencesQuantum Physics (quant-ph)010306 general physicsQuantum
researchProduct

Anti-Zeno-based dynamical control of the unfolding of quantum Darwinism

2020

We combine the collisional picture for open system dynamics and the control of the rate of decoherence provided by the quantum (anti-)Zeno effect to illustrate the temporal unfolding of the redundant encoding of information into a multipartite environment that is at the basis of Quantum Darwinism, and to control it. The rate at which such encoding occurs can be enhanced or suppressed by tuning the dynamical conditions of system-environment interaction in a suitable and remarkably simple manner. This would help the design of a new generation of quantum experiments addressing the elusive phenomenology of Quantum Darwinism and thus its characterization.

Physics---Quantum PhysicsQuantum decoherenceFOS: Physical sciencesPhysics and Astronomy(all)Quantum DarwinismOpen system (systems theory)Settore FIS/03 - Fisica Della MateriaMultipartiteopen quantum system quantum darwinism collision models zeno effectClassical mechanics/dk/atira/pure/subjectarea/asjc/3100Zeno's paradoxesQuantum Physics (quant-ph)Phenomenology (particle physics)QuantumQuantum Zeno effect
researchProduct

Reading a Qubit Quantum State with a Quantum Meter: Time Unfolding of Quantum Darwinism and Quantum Information Flux

2019

Quantum non-Markovianity and quantum Darwinism are two phenomena linked by a common theme: the flux of quantum information between a quantum system and the quantum environment it interacts with. In this work, making use of a quantum collision model, a formalism initiated by Sudarshan and his school, we will analyse the efficiency with which the information about a single qubit gained by a quantum harmonic oscillator, acting as a meter, is transferred to a bosonic environment. We will show how, in some regimes, such quantum information flux is inefficient, leading to the simultaneous emergence of non-Markovian and non-darwinistic behaviours.

Statistics and ProbabilityPhysicsReading (computer)FluxStatistical and Nonlinear PhysicsQuantum Darwinism01 natural sciencesSettore FIS/03 - Fisica Della Materiaquantum non-Markovianity010305 fluids & plasmasQuantum stateQuantum mechanicsQubit0103 physical sciencesQuantum DarwinismQuantum systemcollision modelQuantum information010306 general physicsdecoherenceQuantumMathematical Physics
researchProduct